Asymmetric Syntheses of (+)-Diltiazem Hydrochloride

Keith G. Watson,*^a Yik M. Fung,^a Matthew Gredley,^a Graham J. Bird,^a W. Roy Jackson,*b Helen Gountzos,b **and Barry R. Matthewsb**

^a*Research Group, I.C.I. Australia Operations Pry. Ltd, Newsom Street, Ascot Vale, Victoria* **3032,** *Australia*

^b*Department of Chemistry, Monash University, Clayton, Victoria 3 168, Australia*

Efficient enantioselective syntheses of the important cardiac drug (+)-cis-(2S,3S)-diltiazem from (€)-methyl 4-methoxyphenylpropenoate *via* either the (2R,3S)- or (2S,3R)-enantiomers of threo-methyl 3-(4-methoxyphenyl)-2,3-dihydroxypropanoate are described.

 $(+)$ - $(2S,3S)$ -cis-Diltiazem hydrochloride **(6)** is a potent vasodilating agent discovered by Tanabe Seiyaku Co. Ltd. that possesses calcium channel blocking activity. *1* Several synthetic approaches have been described² of which many are in the patent literature.3 All but one appear to involve a classical resolution. The one asymmetric synthesis was patented by another Japanese pharmaceutical company.4 It involves an asymmetric Sharpless epoxidation but suffers from having a large number of steps.

We now report efficient syntheses of (+)-diltiazem **(6)** from (E)-methyl 4-methoxypropenoate *via* either of the enantiomers of threo-methyl **3-(4-methoxyphenyl)-2,3-dihydroxy**propanoate **(2).** Both of these enantiomers are available in excellent chemical yield (>95%) and high optical purity $(\geq 88\%)$ by reaction of the (E) -propenoate (1) with N-methyl-

Scheme 1. *Reagents and conditions:* i, N-methylmorpholine N-oxide, OsO₄-dihydroquinine acetate, 80% ; ii, MeC(OMe)₃, p-MeC₆H₄-S03H, *cu.* 100%; iii, Me3SiC1, Et3NHC1- (trace), *ca.* 100%; iv, $o-H_2NC_6H_4S-K^+$ in dimethylformamide (DMF), *ca.* 100%; v, reactions as in Tanabe synthesis,¹⁰ 81%.

morpholine N-oxide using catalytic amounts of osmium tetroxide and either dihydroquinine or dihydroquinidine acetates as ligands.⁵ Recrystallisation of this material from toluene led to a further increase in enantiomeric purity and material with an enantiomeric excess (e.e.) of *297%* was obtained in *ca.* 80% yield. The catalytic method used the same ligands as those described by Sharpless for the asymmetric dihydroxylation using stoicheiometric amounts of osmium tetroxide and a chiral ligand.6 Subsequently, Sharpless described a catalytic method similar to ours with a further modification which generally gives 1,2-diols at a faster rate and in even higher enantiomeric excess.7

The enantiomeric diols **(2)** are also available by an alternative synthetic routes from *(R)-* or (S-)-4-methoxybenzaldehyde cyanohydrins which are readily available in high optical purity by hydrocyanation of 4-methoxybenzaldehyde in the presence of Inoue catalyst.9

The synthetic strategy involves conversion of the enantiomers of **(2)** into the threo-(2S,3S)-thioether *(5)* which is an intermediate in the Tanabe synthesis of $(+)$ -diltiazem.¹⁰ Conversion of the (2R,3S)-diol **(2)** involves reactions which lead to retention of configuration at both C-2 and C-3. The method by which this has been achieved is outlined in Scheme

Scheme 2. *Reagents and conditions:* i, tricsyl (Trc) chloride-pyridine , 95%; ii, NaH-THF, 97%; iii, o -O₂NC₆H₄SH, NaHCO₃, EtOH, 60%; iv, H2, Pd-C, EtOAc; NaOH, EtOWH20, 95% ; **v,** reactions **as** in Tanabe synthesis, 1081% .

1. The cyclic orthoacetate **(3)** was prepared by the general procedure of Dansette and Jerina.11 It was shown to react with trimethylsilyl chloride in the presence of a catalytic amount of triethylammonium chloride with both high regio- and stereoselectivity to give the chloroacetate **(4).** Reaction of the chloroacetate (4) with potassium o -aminobenzenethiolate gave the threo-(2S,3S)-thioether *(5)* which was converted into $(+)$ -diltiazem by the Tanabe route.¹⁰ Use of the *threo*-diol (2) with e.e. \geq 97% gave (+)-diltiazem hydrochloride with $\lceil \alpha \rceil_{\Omega}^{21}$ 104.5° (c 2.50, CHCl₃), {authentic sample, $[\alpha]_D^{21}$ 103.7° (c 2.53, $CHCl₃$). The overall yield from the propenoate was 65%.

Conversion of the $(2S,3R)$ -enantiomer of the *threo*-diol (2) into the (2S,3S)-thioether (5) involves reactions which lead to the inversion of configuration at both chiral centres. This was achieved by reaction of a sample of the diol **(2),** rich in the $(2S,3R)$ -enantiomer (e.e. 85%), with 2,4,6-trichlorobenzenesulphonyl chloride (tricsyl chloride)¹² (see Scheme 2). This bulky reagent reacted regiospecifically at the C-2-hydroxy group of **(2)** to give the tricsylester **(7).** Treatment of **(7)** with sodium hydride in tetrahydrofuran (THF) gave the cis-epoxide **(8)**, $\alpha \ln^{18}$ +5.3° (c 0.826, CHCl₃). Spectral data for this compound and for a sample of racemic material prepared by the same method were in good agreement with those previously reported for a sample of the racemic epoxide **(8)** prepared by another route.13 The cis-epoxide **(8)** has been previously shown to undergo highly stereoselective syn-ring opening in a tin-catalysed reaction with 2-nitrobenzenethiol leading to the *erythro-diastereoisomer* of **(9)**.^{2,13} However, reaction of **(8)** with 2-nitrobenzenethiol in the presence of a catalytic amount of sodium hydrogen carbonate and in the absence of tin salts was found to give exclusively the *threo-thioether* (9) with $[\alpha]_D^{20} +123.5^{\circ}$ (c 0.56, CHCl₃). The same enantiomer has recently been prepared by an efficient resolution procedure with $\lceil \alpha \rceil_{\text{D}^{25}} + 121^{\circ}$ (c 1, CHCl₃).¹⁴ The enantiomeric purity of our sample of this compound was confirmed as being $\geq 97\%$ by ¹H NMR chiral shift experiments carried out on a sample of the acetate of **(9).** Thus enantiomeric enrichment of the material had occurred during the purification sequence. **A** sample of **(9)** was hydrogenated and hydrolysed to give the key intermediate , the hydroxy-amino acid (5) which had $\left[\alpha\right]_D$ +332° (c 0.634, EtOH) suggesting an e.e. value of 96% by comparison with the published literature value, $[\alpha]_D + 346^\circ$, EtOH.¹⁰

Thus highly stereoselective routes to (+)-diltiazem hydrochloride **(1)** are available via either of the enantiomers of the threo-diol **(2).** Overall yields of enantiomerically pure (+)-diltiazem from 4-methoxyphenylpropenoate are 65% for the orthoester route (Scheme 1) and 43% for the epoxide route (Scheme 2). These yields have not been optimised for either route.

We thank the Australian Department of Education for a postgraduate award (to $B. R. M.$).

Received, 10th April *1990; Cum. Ol01623C*

References

- 1 T. Nagao, M. Sato, H. Nakajima, and A. Kiyomoto, *Chem. Pharm. Bull.,* 1973, 21, 92.
- 2 T. Hashiyama, H. Inoue, M. Takeda, K. Aoe, and K. Kotera, J. *Chem. SOC., Perkin Trans. 1,* 1985,421, and references therein.
- 3 Tanabe Seiyaku Co. Ltd, **Jpn.** Pat., J.P. 59 20,273 (1984); *Chem. Abstr..* 1984, 101, 38486e.
- 4 Shionogi and Co. Ltd, Ger. Pat., DE 3415035 (1984); *Chem. Abs.,* 1984, 102, 185114f.
- *5* M. Gredley, I.C.I. Australia Operations Pty. Ltd, PCT Int. Appl. WO 89 02428; *Chem. Abstr.,* 1989, **111,** 173782~.
- 6 **S.** G. Hentges and **K.** B. Sharpless, *J. Am. Chem.* **SOC.,** 1980,102, 4263.
- 7 E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroder, and K. B. Sharpless, J. *Am. Chem. SOC.,* 1988, 110, 1968; J. **S.** M. Wai, I. Marko, J. **S.** Svendsen, M. G. Finn, E. N. Jacobsen, and K. B. Sharpless, *ibid.,* 1989, 111, 1123.
- 8 B. R. Matthews, H. Gountzos, W. R. Jackson, and K. G. Watson, *Tetrahedron Lett.,* 1989, 5157.
- 9 W. R. Jackson, G. **S.** Jayatilake, B. R. Matthews, and C. Wilshire, *Aust.* J. *Chem.,* 1988, 41, 203.
- 10 Tanabe Seiyaku Co. Ltd, **US** Pat., USP 4 416819 (1983); *Chem. Abstr.,* 1983, **100,** 85 733x.
- 11 P. Dansette and D. **M.** Jerina, J. *Am. Chem. Soc.,* 1974,96,1224.
- 12 R. D. Guthrie and **S.** Thang, *Aust.* J. *Chem.,* 1987,40, 2133.
- 13 T. Hashiyama, H. Inoue, N. Konda, and M. Takeda, J. *Chem. SOC., Perkin Trans. 1,* 1984, 1725.
- 14 M. Senuma, **M.** Shibazaki, S. Nishimoto, K. Shibata, K. Okamura, and T. Date, *Chem. Pharm. Bull.,* 1989,37, 3204.